

DIPLOMA DE POSTÍTULO EN INGENIERÍA DEL CAVING

VERSIÓN ON-LINE 2025 - 2026

Coordinador Académico Profesor Fidel Báez Director académico Profesor Raúl Castro

Introducción

El Departamento de Ingeniería de Minas de la Facultad de Ciencias Físicas y Matemáticas de Universidad de Chile ofrece a la comunidad minera el **Diploma en Ingeniería del Caving (DIC),** periodo 2025–2026, novena generación.

El programa está orientado a profesionales de la industria minera que buscan una profundización y actualización de conocimientos y técnicas para la aplicación efectiva de métodos de explotación subterráneos por hundimiento.

El Diploma en **DIC** busca ser la instancia académica de nivel internacional que encapsule y promueva la discusión y la reflexión del conocimiento de los procesos mineros que identifican a la minería de Caving.

El Diploma se desarrolla en base a:

- · Cursos avanzados en minería de Caving.
- · Actividades evaluadas en cada curso.
- Un curso final de Proyecto de Diploma, donde se realiza la aplicación de los conceptos del Programa.

Objetivos del programa

Al término del Programa los y las profesionales serán capaces de discutir, defender, proponer, evaluar, compartir o aceptar juicios críticos respecto de las distintas materias que comprenden la Ingeniería del Caving, destacándose, entre otras, las siguientes competencias específicas:

- Entender y distinguir las últimas técnicas de caracterización geológica y geotécnica de zonas de explotación, así como comprender el rol de las técnicas de preacondicionamiento en el macizo.
- · Conocer y aplicar los fundamentos geomecánicos que sustentan el Caving.
- Identificar los principales riesgos geomecánicos y como éstos pueden ser modelados, mitigados y manejados de manera eficaz.
- Comprender los fundamentos del diseño de niveles de producción, hundimiento, ventilación y sistema de manejo de materiales.
- Distinguir y aplicar las principales metodologías y herramientas de la planificación minera subterránea.
- Identificar y proponer soluciones para problemas técnico/económicos que pondrían en riesgo un proyecto de caving tales como recursos humanos, manejo de materiales y logística entre otros.

Horas de docencia, estudio personal y actividades

Tiempo de enseñanza total : 90 h. Proyecto : 40 h. Estudio personal + actividades : 50 h. Tiempo total : 180 h.

- El formato de clases será online, a través de plataforma U-Cursos y ZOOM, en sesiones los días martes, miércoles y jueves.
- Trabajo individual (Proyecto) que debe materializarse con la entrega de un informe / presentación en el último curso del Diploma.

Tem a	Nombre del tema	Módulo	Nombre del módulo	Docencia [h]	E+A [h]	
1	Introducción	1	Introducción	6	3	
	Caracterización	1	Caracterización geotécnica			
2	Geotécnica y	2	Preacondicionamiento del macizo	12	7	
	Preacondicionamiento		rocoso			
		1	Fundamentos geomecánicos			
3	Fundamentos	2	Geomecánica aplicada en entornos	12	8	
	geomecánicos		de alto y bajo esfuerzo	12	J	
		3	Casos de estudio			
	4 Diseño minero		Niveles principales en minas de BC y			
4			Diseño minero		Flujo gravitacional	12
		2 Análisis de riesgos				
	Tronadura y Excavación	1	Excavación usando explosivos			
5	en Roca	2	Tronadura de desarrollos y	12	7	
	CITROCA	2	producción			
		1	Principios de la ventilación de minas y			
6	Ventilación de Minas		Prevención de incendios	12	7	
	Subterráneas	Subterráneas 2		Aplicación de principios a minería de	12	,
			caving			
		1	Planificación del BC			
7	Planificación Minera	2	Aspectos estratégicos	12	7	
		3	Aspectos generales y optimizantes			
	Taller de Sustentabilidad		Aspectos Generales	2		
8	Análisis de proyectos de	1	Análisis de casos de estudio	4	3	
	caving					
9	Proyecto Final	1	Presentación de proyecto	6	-	
	Total [h]			90	50 (+40)	

Evaluación de actividades

Las actividades evaluativas de este Diploma tienen las siguientes características:

- Son de carácter obligatorio y tendrán el formato de un proyecto de corto alcance.
- Evaluación con fecha de entrega posterior al término del curso.
- · Algunas actividades podrían ser desarrolladas en software.
- · Actividades evaluadas a través de presentaciones.

Calendario

	Módulo	Profesores	Días	Mes	Año
1	Introducción	Raúl Castro Fidel Báez	27,28, 29	mayo	
2	Caracterización Geotécnica y Preacondicionamiento	Andrés Brzovic	17, 18, 19 24,25, 26	junio	
3	Fundamentos geomecánicos y aplicación	Javier Vallejos Pedro Landeros David Cuello	22, 23, 24 29, 30, 31	julio	2025
4	Diseño Minero	Raúl Castro Javier Ruiz del Solar	19, 20, 21 26, 27, 28	agosto	
5	Tronadura y Excavación en Roca	Luis Felipe Orellana Danko Morales	23, 24, 25 30, 1, 2	septiembre octubre	
6	Ventilación de Minas	Sergio Valencia	9, 10, 11 16, 17, 18	diciembre	
7	Planificación Minera	Alfonso Ovalle	13, 14, 15 20, 21, 22	Enero	
8	Análisis de proyectos de BC	Gustavo Reyes	18, 19, 20	Marzo	2026
9	Taller de Sustentabilidad Estudio de Caso, presentación proyecto	Andreina García Raúl Castro Fidel Báez	10, 11, 12	Marzo	

Las clases se realizarán de martes a jueves en horario de 18:00 a 20:00 horas (Chile).

Profesores del programa

Profesor (a)	Grado académico	Institución actual		
Andrés Brzovic	Geólogo, PhD	Codelco, El Teniente		
Andres Bizovic	Geologo, Filb	(Director de Minería Subterránea)		
Raúl Castro	Ingeniero de Minas, PhD	Universidad de Chile		
David Cuello	Ingeniero de Minas, MSc	Consultor		
Andreina García	PhD en Química	Universidad de Chile		
Pedro Landeros	I.C. Minas, MSc ©	Director Corporativo de Geotecnia Minería Profunda en CODELCO		
Danko Morales	Ingeniero de Minas	ENAEX		
Daliko iviolales	ingeniero de ivilitas	(Gerente Minería Subterránea)		
Luis Felipe Orellana	Ingeniero de Minas, PhD	Universidad de Chile		
		HATCH		
Gustavo Reyes	Ingeniero de Minas	(Gerente de Proyectos, Consultor)		
Gustavo Neyes	ingemero de ivilias	Universidad de Chile		
		Universidad Católica de Chile		
		AMEC		
Alfonso Ovalle	Ingeniero de Minas	(Principal Ingeniero de Minas)		
		Universidad de Chile		
Sergio Valencia	Ingeniero de Minas	Codelco, Chuquicamata		
Jergio Valericia	ingeniero de ivilias	(Jefe de Ventilación)		
Javier Ruiz del Solar	Ingeniero Eléctrico, PhD	Universidad de Chile		
Javier Vallejos	Ingeniero de Minas, PhD	Universidad de Chile		

Requisito de admisión y postulación

Podrán postular al programa en Ingeniería del Caving, quienes cumplan con las siguientes formalidades:

- Estar en posesión del Grado de Licenciado en una disciplina afín al programa.
 Asimismo, podrán postular quienes posean un título profesional cuyo nivel, contenido y duración de estudios correspondan a una formación equivalente a la del grado de Licenciado en la Universidad de Chile. Éste deberá acreditarse mediante fotocopia notarial del certificado correspondiente.
- Currículum vitae.
- Link de postulación:

https://ucampus.uchile.cl/m/fcfm postulante/o/173b35e2e18af90e305c75a5e00bb08 3a29e75fc

El proceso de postulación está abierto y concluye el 30 de marzo, 2025.

Los cupos son limitados y se ofrecen por estricto orden de inscripción y cumplimiento de requisitos. Cada postulación será resuelta por el Director Académico del Programa quién decidirá la aceptación o rechazo a su admisión, según los antecedentes presentados.

Las personas interesadas en realizar el Diploma deberán postular a la secretaría del programa, adjuntando la documentación requerida a

Valores y Forma de Pago

El programa tiene un costo total de \$4.600.000 - US\$ 5.120

Todo alumno deberá pagar una inscripción de \$500.000 / US\$ 640 los que está incluido en el valor total del Programa.

El valor restante se deberá pagar en cuotas mensuales con transferencia electrónica o tarjeta bancaria en un plazo no mayor a 12 meses.

- El valor del programa en dólares podrá variar dependiendo el tipo de cambio publicado por la U. de Chile al momento de facturación (se considera t/c \$ 950).
- Alumnos patrocinados por empresas en Chile, deberán formalizar mediante O/C por módulo antes del 15 de abril 2025.
- Alumnos particulares o extranjeros deberá formalizar el pago antes del inicio de cada módulo según calendario.
- Antes de 14 marzo 2026 todo alumno deberá tener pagado el programa completo (requisito de graduación y entrega de diploma).

Certificado

A la aprobación de todos los requisitos del Programa, el/la estudiante recibirá un **Diploma en Ingeniería del Caving (DIC)**, emitido por el Departamento Ingeniería de Minas de la Universidad de Chile.

Sede y Contacto

Departamento Ingeniería de Minas
Facultad de Ciencias Físicas y Matemáticas
Universidad de Chile
Beauchef 850 – Santiago de Chile
Ingrid Thiele - Verónica Möller
diploma@minas.uchile.cl - www.minas.uchile.cl

Nota

- Los organizadores se reservan el derecho de cancelar el **DIC** si los alumnos / alumnas no se ajustan a un número mínimo necesario y/o por motivos de fuerza mayor.
- Ante la eventualidad del retiro de algún docente, los organizadores se comprometen a encontrar un reemplazante adecuado.
- Al cursar el Diploma en Ingeniería del Caving dictado por Ingeniería de Minas, se considera
 que cada estudiante dedique exclusividad a los horarios de clases, para un buen
 aprendizaje. En caso contrario si el/la estudiante trabaja simultáneamente cuando se
 dictan las clases, será de su responsabilidad su rendimiento y cumplir con las evaluaciones
 en los tiempos establecidos por cada módulo y la coordinación académica del programa
 (No será justificación las inasistencias o evaluaciones por encontrarse en turnos, horario de
 trabajo, reuniones, etc.).

PROGRAMA DEL DIPLOMA INGENIERÍA DEL CAVING

2024 - 2025

Tema 1: INTRODUCCIÓN A MINERÍA DE CAVING

Objetivos

Al finalizar el curso los participantes serán capaces de:

- Comprender y aplicar los conceptos que sustentan la selección de métodos de explotación subterráneos.
- Entender y aplicar las variables y parámetros claves para el diseño de block/panel y Sublevel caving.
- Aplicar y comprender los conceptos que sustentan la selección de variantes de explotación por caving.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
	Métodos de explotación subterráneos	1	0.25	
	Variantes / Clasificación del método de explotación por hundimiento	1	0.25	
Módulo 1:	Parámetros que definen el diseño minero	1	0.25	Lecturas Tendencias
Introducción	Operaciones	1	0.25	tecnológicas
	Factores de riesgo	1	0.25	
	Variables clave	1	0.25	
	Total [h]	6	1.5	1.5

Tema 2: CARACTERIZACIÓN GEOTÉCNICA Y PREACONDICIONAMIENTO

Objetivos

Al finalizar el curso los participantes serán capaces de:

- Conocer y aplicar los conceptos que permiten caracterizar al macizo rocoso.
- Comprender el rol de las discontinuidades y su representación.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
	Definiciones geotécnicas	0.5	0.15	
	Información básica para un proyecto			
	(Muestras, topografía, geología and hidrogeología)	1	0.25	
Módulo 1:	Clasificación y descripción de discontinuidades	1	0.25	Estimación parámetros
Caracterización geotécnica	Análisis y representación de discontinuidades	1	0.25	Criterio falla Hoek Brown
	Clasificación del macizo rocoso	1	0.25	
	Propiedades mecánicas de la roca/ macizo rocoso	1	0.25	
	Esfuerzos in-situ	0.5	0.15	
	Marco conceptual y fundamentos técnicos del Preacondicionamiento.	1	0.25	
Módulo 2:	Técnicas para implementación del Preacondicionamiento	0.5	0.15	Impacto del PA en
	Fracturamiento hidráulico	0.5	0.15	la calidad del
Preacondiciona-	Debilitamiento Dinámico con Explosivos	0.5	0.15	macizo rocoso
miento del macizo	Técnicas mixtas de preacondicionamiento	0.5	0.15	(teórico –
rocoso	Generación de Línea Base y Fase Experimental	1	0.2	práctico)
	Monitoreo y control de la fragmentación	1	0.2	
	Casos de estudio	1	0.2	
	Total [h]	12	3	4

Tema 3: FUNDAMENTOS GEOMECÁNICOS

Objetivos

Al finalizar el curso los participantes serán capaces de:

- Asimilar y aplicar los conceptos de esfuerzos inducidos, fortificación y mecanismos del caving.
- Entender los principales peligros geomecánicos en condiciones de altos esfuerzos.
- Comprender y aplicar los principales peligros en condiciones de bajos esfuerzos.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
	Esfuerzo y deformación en roca	0.5	0.15	
Módulo 1:	Esfuerzos inducidos entorno a	1 0	1 0.25	
Modulo 1:	excavaciones	1	0.23	
Fundamentos	Estabilización del macizo rocoso	1	0.25	
geomecánicos	Sismicidad inducida	0.5	0.15	
geomecanicos	Mecánica del caving	1	0.25	
	Ejercicios	0.5	0.15	Modelamiento
	Condiciones y peligros geomecánicos	1	0.25	numérico para
N 4 4 - I - I - 2 -	Preacondicionamiento aplicado	1	0.25	determinar
Módulo 2:	Excavaciones en condiciones de altos	1	0.25	Esfuerzos y
Geomecánica	esfuerzos	1	0.23	deformaciones
aplicada en	Excavaciones en condiciones de bajos	1	0.25	entorno a
entornos de alto	esfuerzos	1	0.23	excavaciones
y bajo esfuerzo	Sismicidad observada en condiciones	0.5	0.15	executación co
y bajo estactzo	de altos esfuerzos	0.5	0.13	
	Fortificación	0.5	0.15	
	Monitoreo	0.5	0.15	
Módulo 3:				
	Casos de estudio	2	0.35	
Casos de estudio	casos de estadio	2	0.55	
				_
	Total [h]	12	3	5

Tema 4: DISEÑO MINERO

Objetivos

Al finalizar el curso los participantes serán capaces de:

- Conocer y comprender las variables y parámetros claves para el diseño del nivel de producción en block/panel y Sublevel caving.
- Comprender los peligros de seguridad, productividad y costos asociados al diseño del nivel
- Conocer y comprender los fundamentos que sustentan el diseño del nivel de hundimiento
- · Comprender y aplicar la relación entre el diseño y la capacidad productiva.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
	Principios del flujo gravitacional	1	0.25	
Módulo 1:	Fragmentación primaria y secundaria	1	0.25	
	Diseño de niveles de extracción	1	0.25	
Niveles	Diseño de bateas	1	0.25	
principales en	Diseño de nivel de hundimiento	1	0.25	
minas de BC y Flujo	Sistemas de extracción por LHD y automatización	1	0.25	Modelamiento de capacidad
gravitacional	Sistemas de manejo de materiales y simulaciones	1	0.25	productiva mediante
	Planes de producción y simulaciones	1	0.25	eventos
14/11/2	Recuperación minera y dilución	1	0.2	discretos
Módulo 2:	Bombeos	0.5	0.15	
Análisis de	Colgaduras	0.5	0.15	
	Estabilidad	0.5	0.15	
riesgo	Indicadores de extracción	0.5	0.15	
	Cuantificación de peligros	1	0.2	
	Horas totales	12	3	5

Tema 5: EXCAVACIONES EN ROCA

Objetivos

Al finalizar el curso los participantes serán capaces de:

- · Conocer y comprender los tipos de contrato de obras para el desarrollo mina
- Conocer y aplicar la importancia que tiene la tronadura y su influencia en su entorno físico
- Estarán capacitados para evaluar en terreno, la efectividad de las prácticas de perforación y tronadura en la construcción de labores subterráneas.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
N44 dul = 1.	Explosivos y sistemas de iniciación	1	0.25	
Módulo 1:	Interacción explosivo-roca	1	0.25	
Excavación	Obras de preparación	1	0.25	
usando explosivos	Monitoreo y análisis de velocidad de detonación	1	0.25	Diseño de tronadura y
explosivos	Medición y análisis de vibraciones inducidas por voladura	1	0.25	
Módulo 2:	Desarrollos horizontales y verticales	2	0.5	Estimación de daño entorno a
Tronadura de	Características del ciclo típico de construcción	1	0.25	excavaciones
desarrollos y producción en	Condiciones de éxito en el desarrollo de túneles	1	0.25	
minería de	Tronadura de socavación	1	0.25	
caving	Tronadura de zanjas y calles	1	0.25	
	Casos de estudio	1	0.25	
	Horas totales	12	3	4

Tema 6: VENTILACIÓN DE MINAS

Objetivos

Al término del curso los participantes serán capaces de:

- Conocer y comprender los conceptos fundamentales del diseño de sistemas de ventilación en minería subterránea.
- · Aplicar los aspectos específicos a considerar para minería de caving.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
Módulo 1:	Requerimientos de aire	1	0.25	
	Resistencia y caída de presión	2	0.5	
Principios de	Ventiladores	1	0.25	
ventilación de minas y	Técnicas y métodos de estudios de ventilación	1	0.25	Cálculo de requerimientos de aire y Simulación de circuito de ventilación
Prevención de	Modelamiento de incendios	1	0.25	
incendios	Ejemplos de aplicación	1	0.25	
Módulo 2:	Ejemplos de sistemas de ventilación de minería por hundimiento	2	0.5	
Principios de ventilación	Control de contaminantes en minería por hundimiento	1	0.25	(ejercicio)
aplicados	Monitoreo y control de la ventilación	1	0.25	
	Ventilación on-demand	1	0.25	
	Total [h]	12	3	4

Tema 7: PLANIFICACIÓN MINERA

Objetivos

Al finalizar el curso los participantes serán capaces de:

- Conocer los aspectos de control producción necesarios para la planificación y programación de la producción
- Conocer los fundamentos de confiabilidad aplicado a la planificación de producción que identifique las características de los métodos de explotación por hundimiento en restricciones a incorporar en los planes mineros para los diferentes horizontes de planificación.
- Aplicar diferentes técnicas de programación de la producción y preparación minera de modo de incentivar los factores de renta del negocio minero sujeto a las restricciones impuestas por los métodos de explotación.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades
Módulo 1:	Selección del método y variante	1	0.25	
Modulo 1:	Selección de niveles a explotar	1	0.25	
Planificación del	Determinación de recursos	1	0.25	
BC	Ritmo de producción	1	0.25	
ВС	Programa de hundimiento	1	0.25	
	Programa de producción y costos	1	0.25	
Módulo 2:	Consideraciones para el diseño de niveles, Infraestructura	1	0.25	Planificación de la
Aspectos	Programa de desarrollo y costos	1	0.25	producción
estratégicos	Equipos y personal	0.5	0.15	(software)
	Evaluación económica y Riesgos	0.5	0.15	(Software)
Módulo 3:	Aspectos estratégicos generales	1	0.25	
	Agregación de valor	1	0.25	
Aspectos generales y optimizantes	Estudios trade-off	1	0.2	
	Total [h]	12	3	4

TEMA 8: ANÁLISIS DE PROYECTOS DE CAVING

Objetivos

Al finalizar el curso los participantes serán capaces de:

• Entender las bases que sustentan la planificación estratégica y ejecución efectiva de proyectos de caving.

Módulo	Contenidos	Docencia [h]	Estudio [h]	Actividades [h]
Módulo 1:	Factores de éxito	1	0.25	
	Riesgos involucrados	2	0.25	
Análisis de casos de	Herramientas y técnicas para el control de riesgos	1	0.25	Benchmark
estudio	Casos de estudio	2	0.25	
	Total [h]	6	1	2

Tema 9: PROYECTO FINAL

Objetivos

El objetivo del curso de proyecto es permitir que el alumno aplique los conocimientos y técnicas adquiridas en el transcurso del Diploma, mediante la realización de un proyecto a su elección, en un tema relativo a la Ingeniería del Caving.

Detalles

El proyecto de Diploma debe cumplir con lo siguiente:

- Debe poseer un alcance tal que permita recopilación de información, análisis y desarrollo del trabajo dentro de los plazos establecidos.
- · Contemple un área de desarrollo en el marco de la Ingeniería de Block/Sublevel
- · Caving, referidos a los contenidos del Diploma.
- · Utilice las herramientas entregadas en el Diploma del Caving.
- · Sea relevante a la realidad productiva.

DIPLOMA EN INGENIERÍA DEL CAVING

VERSIÓN ON-LINE

2025 - 2026