Lamentablemente, la actual pandemia de SARS-CoV2 que produce el COVID-19 genera un tremendo estrés en los sistemas público y privado de salud, especialmente de urgencias. En efecto, era bien sabido por los profesionales de la salud que, de no tomar medidas importantes en Chile, la probabilidad de quedar sin camas en la unidad de pacientes críticos (UPC) para el cuidado de los personas más graves de COVID-19 sería una realidad más temprano que tarde.
Es triste ver como medio Chile está calculando capacidades para tratar de estimar cómo va creciendo el virus, cuántas camas hay en el país y cuántos respiradores faltan ¡recién ahora! Una realidad que es cotidiana en campaña de invierno en hospitales chilenos, pero que, lamentablemente, es una situación no asumida por todos y con la cual ya nos acostumbramos a vivir todos los años.
Vemos con preocupación como equipos de científicos y expertos en Data Science están mirando datos sesgados de múltiples formas. El número de contagiados asintomáticos es mucho mayor que los casos que llegan a las urgencias, las personas que se hacen el test son mucho menos que las que deberían testearse, y los resultados de hoy son los de hace un par de días -o sea, hay un desfase-.
Similarmente hay expertos generando modelos predictivos -con estos datos sesgados y poco accionables- que son completamente inútiles. Muchos tratando de generar visualizaciones que no superan a las películas de pandemias de los años 80, usando modelos epidemiológicos (como el BASS o el SIR) que son modelos agregados para mostrar evolución de masas y que, con información sesgada, con suerte permiten obtener cotas mínimas. Nada que el gobierno no pueda calcular bien -o mejor, pues probablemente tienen más datos-.
Para poder detener contagios, se requieren datos microscópicos, modelos no a nivel agregado (macroscópico), sino a nivel desagregado (microscópico). En Singapur, el gobierno creó una aplicación (TraceTogether) que es capaz de almacenar los celulares cercanos a los cuales se estuvo en contacto durante los últimos 15 días. Es decir, si me detectan COVID-19 positivo, entonces, por medio de la App puedo avisar a todos los celulares que estuvieron cerca del mío que se realicen el test de esta enfermedad. La idea es detectar a los asintomáticos y, de esta manera, reducir efectivamente la tasa de contagio. Gracias a herramientas como esta, Singapur es uno de los países más exitosos en la contención de esta virus, a pesar de ser un hub internacional en Asía.
Este tipo de modelos desagregados los hemos trabajado desde hace años en el Centro de Investigación en Inteligencia de Negocios (CEINE), con el fin de modelar la información que fluye en internet. Por eso, sabemos que los datos que hay actualmente en Chile no son suficientes y no existen siquiera los mecanismos para generarlos y para poder desarrollar procesos que permitan prevenir el contagio. No obstante, sería posible construir una App similar a TraceTogether de manera muy fácil y con un impacto potencial muy alto, incluso para futuras pandemias.
En el CEINE hemos trabajado hace años en el análisis y procesamiento de datos hospitalarios para mejorar su gestión, especialmente en urgencias, donde hemos desarrollado algoritmos de Inteligencia Artificial para triaje, readmisión hospitalaria y monitoreo de pacientes hospitalizados -tanto en el hospital como en sus domicilios-, entre muchos otros proyectos.
Hace años desarrollamos un método confiable que permite dimensionar el número de box de urgencia en función de una calidad de servicio esperada. La capacidad debe planificarse para entregar mejores niveles de servicio, satisfacción de las personas y mejor uso de los recursos.