Noticias

Físicos encuentran mecanismo que permite a micronadadores artificiales moverse como espermios

Físicos lograron reproducir el movimiento oscilante de un espermio

Los cilios o flagelos son estructuras similares a pelos microscópicos que estánpresentes en muchos sistemas biológicos y que son usados por éstos para autopropulsarse, o remover cosas del entorno. La imagen más clásica es la del espermatozoide, que nada para fecundar al óvulo gracias a su cola que oscila. Esa cola es un flagelo y es movido por motores microscópicos.

También las bacterias, como la Escherichia Coli, se propulsan por flagelos que oscilan constantemente gracias a estos motores, mientras que a nivel sintético los microrrobots hacen lo propio copiando este complejo mecanismo biológico de locomoción.

Hasta hace poco se creía que la única forma en que los flagelos podrían oscilar era mediante motores que tuvieran partes rotatorias o un reloj interno.

Sin embargo, dos investigadores chilenos del Núcleo Milenio Física de la Materia Activa, acaban de publicar un estudio donde muestran que hay otros mecanismos más simples para lograrlo. Un hallazgo que abre la posibilidad de fabricar microrrobots que realicen tareas complejas sin necesidad de que cuenten con motores sofisticados, dice Rodrigo Soto, académico del Departamento de Física de la FCFM, director del Núcleo y uno de los autores del estudio.

Nuevos mecanismos

En su investigación, titulada “Active colloidal chains with cilia- and flagella-like motion” y que será publicada en la revista New Journal of Physics, los doctores Rodrigo Soto y Sebastián González tomaron un modelo artificial para estudiar la física de este sistema de locomoción a través de simulaciones. “Estudiamos si era posible reproducir el movimiento de los flagelos de espermatozoides con un modelo muy simple de partículas catalíticas activas. Estas últimas son pelotitas (de oro y platino) suspendidas en agua oxigenada, en cuya superficie se consume o produce hidrógeno, lo que crea movimiento. Lo que logramos es encontrar estructuras que oscilan (como espermios) con tan solo 6 partículas, que es probablemente el modelo más simple estudiado hasta el momento”, explica Sebastián González, investigador posdoctoral del Núcleo y autor del estudio.

Rodrigo Soto indica que estudios previos con oro, platino y agua oxigenada habían mostrado que eran posibles movimientos lineales. “Ahora sabemos que también pueden surgir movimientos oscilatorios y sin necesidad de un motor”, dice.

Los físicos también demostraron que el sistema artificial que simularon podía transportar carga, tal como lo hace un espermio en su cabeza al llevar información genética para fecundar al óvulo. “La gracia de esto es que la estructura que encontramos, esta cadena, tiene una química que se puede comportar como una cosa sólida o móvil, por lo que uno podría, por medios externos, controlar cuando se empieza a mover o no”, explica Sebastián González, quien en junio viaja a Alemania a probar experimentalmente este hallazgo.

Aplicaciones futuras

Aunque el trabajo de los físicos es teórico y busca ampliar el conocimiento en esta área, sus resultados pueden tener aplicaciones a futuro en nanotecnología y medicina.

Rodrigo Soto explica que descubrir este mecanismo más simple para lograr una movilidad oscilante tipo espermio, puede permitir crear diseños de microrrobots más simples que los actuales. “Si quieres un microrrobots que haga movimientos tipo flagelo, tienes que hacerlo con un motorcito con rodamientos, que es súper complicado. Lo que puedes hacer ahora es un microrrobot mucho más sencillo”, dice.

¿Para qué queremos hacer robots pequeñitos? El doctor Soto indica que varias aplicaciones que se están investigando en medicina buscan meter pequeños robots adentro del torrente sanguíneo para curar alguna enfermedad focalizadamente, como el cáncer, por ejemplo. Otras aplicaciones posibles son en nanotecnología, como partes de chips que se mueven con un fin. “Piezas móviles para celulares o computadores, por ejemplo, que hagan algún tipo de oscilación, tirando cosas para un lado y otro alternadamente”, dice Soto.

De hecho, actualmente se están desarrollando soluciones híbridas que incluyen componentes biológicos y artificiales en el campo de los micronadadores, por lo que entender la física de sus sistemas, es decir, sus propiedades, mecanismos o cómo se comportan en diversas situaciones, es crucial para su desarrollo.

Galería de fotos

Últimas noticias

En el Palacio de La Moneda

AMTC: políticas públicas para más mujeres en STEM y minería.

El Advanced Mining Technology Center de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile fue una de las instituciones participantes de la sesión especial de la Mesa Mujer y Minería, realizada el jueves 27 de junio en el Salón Montt-Varas del Palacio de La Moneda. El Centro fue representado por la directora de Relaciones Estratégicas, Gabriela Novoa, quien expuso su experiencia en el sector minero, como también abordó el trabajo del AMTC en potenciar la atracción y desarrollo de carrera de mujeres, en el impulso de la divulgación científica y sensibilización sobre el papel de la mujer en el mundo científico-minero.

Postgrado FCFM

¡Realizamos el primer OPEN MIE 2024!

La actividad permitió conocer más sobre el Magíster en Innovación y Emprendimiento en Ciencia y Tecnología (MIE), programa de postgrado de nuestra facultad que busca impulsar la generación de soluciones innovadoras y con impacto.

Educación Continua FCFM

Astronomía e Hidrógeno Verde: los temas de los nuevos diplomados FCFM

“Fundamentos de la Astronomía” e “Hidrógeno Verde y sus Derivados” se sumaron este año a la oferta de Educación Continua de la Facultad de Ciencias Físicas y Matemáticas de la UCHILE, y cuentan con sus postulaciones abiertas. Ambos programas se posicionan como una oportunidad para actualizar y potenciar conocimientos, con rebajas de arancel especiales que llegan hasta el 50%.