Noticias

Científicos estudian nuevas estructuras de redes ópticas

Científicos estudian nuevas estructuras de redes ópticas

Determinar cómo se comporta la luz al viajar por distintos materiales y así controlar mejor la información que pasa por dispositivos ópticos, es el resultado de la investigación de un grupo de científicos del Departamento de Física de la Facultad de Ciencias Físicas y Matemáticas de la U. de Chile y del Instituto Milenio de Óptica MIRO. El resultado, que avanza en el camino de la computación óptica, apareció en la última versión de la revista Physical Review A.

Buscamos aprender cómo la luz viaja y cómo se autoatrapa en diversos materiales fotónicos, donde la geometría elegida determina, de forma importante, las propiedades que la luz experimentará”, señala el profesor Rodrigo Vicencio, quien dirige el grupo de Redes Fotónicas del Instituto Milenio de Óptica MIRO. De esta manera podrían dirigir de mejor manera la información de tipo óptica y así distribuirla controladamente en una red fotónica arbitraria, siendo un paso importante para la futura computación óptica, que sería más rápida que los actuales computadores electrónicos. 

Para lograrlo los científicos estudiaron un manojo de fibras ópticas, con una geometría muy específica (una red denominada de Lieb), donde demostraron que es posible transportar controladamente la luz localizada en regiones espaciales muy pequeñas (20 micrómetros).

“Antes de este trabajo sólo se había predicho transporte controlado de luz en redes con geometría de Kagome. Con nuestros resultados demostramos que existe un mayor número de geometrías en las que sería posible observar un atrapamiento y un transporte controlado, por lo tanto, más opciones en la práctica de usar cristales fotónicos en aplicaciones que controlen y distribuyan información de tipo óptica”, explica Vicencio.

Este trabajo es parte de una investigación anterior sobre redes fotónicas, donde surgió la necesidad de estudiar otras configuraciones posibles, para lo cual desarrollaron un análisis numérico con herramientas de programación. El siguiente paso será la comprobación experimental.

Es difícil crear las condiciones experimentales para corroborar nuestras predicciones y en el caso de lograrlo, estaríamos en condiciones únicas a nivel mundial para demostrar transporte controlado de luz en cristales fotónicos, con su consecuente posibilidad en aplicaciones fotónicas en Chile”, concluye el académico.

Galería de fotos

Últimas noticias

En el Palacio de La Moneda

AMTC: políticas públicas para más mujeres en STEM y minería.

El Advanced Mining Technology Center de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile fue una de las instituciones participantes de la sesión especial de la Mesa Mujer y Minería, realizada el jueves 27 de junio en el Salón Montt-Varas del Palacio de La Moneda. El Centro fue representado por la directora de Relaciones Estratégicas, Gabriela Novoa, quien expuso su experiencia en el sector minero, como también abordó el trabajo del AMTC en potenciar la atracción y desarrollo de carrera de mujeres, en el impulso de la divulgación científica y sensibilización sobre el papel de la mujer en el mundo científico-minero.

Postgrado FCFM

¡Realizamos el primer OPEN MIE 2024!

La actividad permitió conocer más sobre el Magíster en Innovación y Emprendimiento en Ciencia y Tecnología (MIE), programa de postgrado de nuestra facultad que busca impulsar la generación de soluciones innovadoras y con impacto.

Educación Continua FCFM

Astronomía e Hidrógeno Verde: los temas de los nuevos diplomados FCFM

“Fundamentos de la Astronomía” e “Hidrógeno Verde y sus Derivados” se sumaron este año a la oferta de Educación Continua de la Facultad de Ciencias Físicas y Matemáticas de la UCHILE, y cuentan con sus postulaciones abiertas. Ambos programas se posicionan como una oportunidad para actualizar y potenciar conocimientos, con rebajas de arancel especiales que llegan hasta el 50%.