Noticias
órganos ramificados

Investigación determina novedosa manera en que las células forman órganos en seres vivos

Investigación determina manera en que las células forman órganos

“En este trabajo desciframos cómo las células madre se organizan para formar órganos ramificados, enfocándonos en las glándulas salivales. Los órganos de este tipo, como pulmones, riñones, páncreas e hígado, son críticos para el correcto funcionamiento del cuerpo de cualquier animal”, explica Ignacio Bordeu, académico del Departamento de Física de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, quien coredactó el paper junto a la Ph.D en Biología de la Universidad de Cambridge, Lemonia Chatzeli.

Los órganos ramificados son aquellos que comienzan como un único ducto inicial que va dividiéndose muchas veces (o bifurcándose) para formar una estructura similar a un árbol, y al interior de dichos ductos que serían sus “ramas”, se transportan fluidos vitales para los seres vivos. Debido a lo anterior, es clave “entender cómo se forman y cuáles son las jerarquías celulares que los mantienen, pudiendo abrir las puertas a nuevas terapias para corregir malformaciones durante el desarrollo embrionario o la adultez”, explica Bordeu, indicando como posible aplicación tratamientos para personas con xerostomía (boca seca), la cual muchas veces se desarrolla durante tratamientos para el cáncer de tiroides, por la acumulación de yodo en las glándulas salivales.

La física y la biología trabajando de la mano

Los órganos aquí estudiados se desarrollan siguiendo un programa de desarrollo muy complejo, que involucra procesos físicos y biológicos, por tanto, la investigación se basó en un estudio biofísico interdisciplinario, que buscó comprender la jerarquía celular que permite la formación de glándulas salivales de ratón, como también el efecto de la activación de genes cancerígenos en su desarrollo. Esto involucró el uso de técnicas estadísticas para poder interpretar los datos e inferir propiedades de la dinámica celular durante el desarrollo, y cómo dicho proceso explicaría la distribución de las células en los tejidos sanos y cancerígenos en la adultez.

Esta unión de disciplinas es lo que permitió avanzar en la comprensión de este tipo de órganos, “en particular, buscamos simplificar los problemas a su expresión más básica, lo que le permite extraer los ingredientes esenciales para que ocurra algún fenómeno. Aplicado a biología, ello nos permite encontrar mecanismos que son universales, es decir, que se observan en un gran número de organismos, y hacer predicciones sobre la dinámica de crecimiento de tejidos. Una capacidad exclusiva de las ciencias exactas como la física y las matemáticas”, añade Bordeu.

Previo a este trabajo, la ciencia consideraba que la formación de las glándulas salivales involucraba la interacción de varios tipos de células, sin embargo, no se sabía cómo éstas se interrelacionan y cómo ellas se originaban a partir de un pequeño conjunto de células madres iniciales y tampoco se conocía cómo la dinámica celular se relacionaba con la organización y topología a gran escala del árbol ramificado, cuya comprensión se logró gracias a este trabajo.

En la actualidad, los investigadores consideran realizar un segundo trabajo, en el que buscarán modelar computacionalmente la dinámica de crecimiento de la red ramificada, donde incorporarán las reglas básicas de crecimiento de la red, lo que permitirá replicar la forma en se produce el desarrollo embrionario.

La investigación apareció en la portada de la revista Developmental Cell con el título: A cellular hierarchy of Notch and Kras signaling controls cell fate specification in the developing mouse salivary gland (Una jerarquía celular de señalización de Notch y Kras controla la especificación del destino celular en la glándula salival de ratón en desarrollo).

Galería de fotos

Últimas noticias

Educación Continua FCFM:

Egresados/as de Bootcamps TI presentan proyectos ante empresas

Desarrollo de Aplicaciones Móviles, Diseño UX/UI, Desarrollo Frontend, y Desarrollo Backend fueron los programas en formato Bootcamps impartidos por el Departamento de Ciencias de la Computación y la Escuela de Postgrado y Educación Continua de la Facultad de Ciencias Físicas y Matemáticas (FCFM).

Estudio pionero en Sudamérica analiza desastre de Villa Santa Lucía

El equipo interdisciplinario compuesto por el académico del Departamento de Ingeniería Civil, Felipe Ochoa, la académica del Departamento de Geología, Marisol Lara, -ambos de la de la Facultad de Ciencias Físicas y Matemáticas de la U. de Chile- y Sergio Sepúlveda (U. Simon Frasier), junto a las estudiantes Karla Burgos y Shantal Palma, y el experto de Sernageomin, Paul Duhart, reveló cómo el retroceso glaciar, acelerado por el cambio climático, puede desencadenar megadeslizamientos como el que afectó a la comunidad de Villa Santa Lucía en la Patagonia chilena.